skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pathan, Arsallarn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recycling different plastics post-consumers causes downgraded performance due to the physical and chemical property differences conflicting with one another. These properties stem from the incompatibility of the blends to crystallize and blend. As there are millions of tons of waste every year, the ability to effectively blend two plastics such as polyethylene and polypropylene becomes crucial. In this poster, a molecular-level study of polyolefin blend co-crystallization will be explored by utilizing solid-state NMR spectroscopy. It is through NMR spectroscopic techniques and the use of selectively activating various parts of the blend through isotopes that aspects of the arrangement can be made. We will conduct studies into the co-crystallization of the blends utilizing deuterated polymers to access the chain-to-chain interface differences. This will give us the ability to see the relative extent of interaction as well as providing overall system kinetics. From these experiments, a diagram of the co-crystallization structure can be made as well as a defined system to analyze crystallization 
    more » « less